# CARBOHYDRATES METABOLISM



## **GLUCOSE METABOLISM**

Site of absorption: Mainly the upper part of small intestine.

Route of absorption: By the portal vein to the liver, i.e., blood stream chiefly in the form of hexoses (glucose, fructose, mannose and galactose) and as pentose sugars (ribose).

## **Blood values of glucose**

The normal fasting value: 70-110 mg/100 ml.

>After meal: 120-150 mg/100 ml.

# Glucose sources in human body

Dietary carbohydrates.
Liver glycogenolysis.
Gluconeogenesis.

## The fate of absorbed glucose

> Glucose oxidation.
> Glycogenesis.
> Lipogenesis.
> Lose in urine (in special conditions).

## Tissues which maintain glucose balance in blood:

### Gastrointestinal tract:

It prevents hyperglycemia (high blood glucose level) after carbohydrate meal. When the glucose contacts with the intestinal mucosa, it secretes into the blood certain factors which stimulate insulin secretion.

## >The liver:

It plays the most important role in regulation of blood glucose level.

In hyperglycemia: it decreases blood glucose by:

- 1. Glycogenesis.
- 2. Oxidation of glucose.
- 3. Lipogenesis.

In hypoglycemia: it increases blood glucose by:

- 1. Glycogenolysis.
- 2. Gluconeogenesis.

3. Interconversion from different hexoses (fractose or galactose) into glucose.

#### >Muscles:

It prevent hyperglycemia by:

- 1. Glycogenesis.
- 2. Oxidation of glucose.
- >Adipose tissue:

It prevent hyperglycemia by increasing lipogenesis.

> The kidney:

It prevent glucose loss in urine. It adds little glucose to the blood by gluconeogenesis.

# Hormones which maintain glucose balance in blood:

Insulin: it lowers the blood glucose level by increasing:

- 1. Glycogenesis.
- 2. Oxidation of glucose.
- 3. Lipogenesis.
- Glucose uptakes.
   It also inhibits:
- 1. Glycogenolysis.
- 2. Gluconeogenesis

Glucagon and adrenaline: they increase the blood glucose level by increasing glycogenolysis and gluconeogenesis and inhibiting glycogenesis.

Solucocorticoids and growth hormone: they increase the blood glucose level by increasing gluconeogenesis and inhibiting glucose uptake, oxidation and lipogenesis.

Thyroxine: it increases the blood glucose level by:

- 1. Increasing the rate of glucose absorption from intestine.
- 2. Stimulating glycogenolysis and gluconeogenesis.
- 3. Inhibiting glycogenesis.
- 4. Increasing the catabolism of insulin.